Magnetically enhanced electrochemical fluidized bed reactors for electro-enzymatic syntheses including gaseous phases

The main objective of the research project is the development, characterization and exemplary application of a magnetically enhanced electrochemical fluidized bed reactor for electro-enzymatic synthesis. The reactor will realize a novel variant of a particle based electrochemical reactor combining the advantages of the very high volume specific electrode surface of particle electrodes with the good mixing and mass transfer properties of e.g. bubble column reactors. The beneficial combination results from the fluidization of the particle electrode while at the same time keeping a conductance due to a magnetically induced chaining of the particles. In comparison to reactors applying numbering up of flat electrodes, the scale-up of a particle electrode is simple and economic. The efficiency of the novel reactor concept for electro-enzymatic synthesis will be demonstrated by the in-situ generation of hydrogen peroxide which is required for oxyfunctionalisation reactions using peroxygenases. The whole project will be hallmarked by a close feedback between experimental results and multiphysics modelling approaches.

Publications

Tschöpe A, Franzreb M (2021) Influence of non-conducting suspended solids onto the efficiency of electrochemical reactors using fluidized bed electrodes. Chemical Engineering Journal: https://doi.org/10.1016/j.cej.2021.130322

Klaiber M, Tschöpe A, Cu K, Waibel I, Heißler S, Franzreb M, Lahann J (2022) Multifunctional Core–Shell Particle Electrodes for Application in Fluidized Bed Reactors. ACS Applied Engineering Materials: https://doi.org/10.1021/acsaenm.2c00072    

Sapotta B, Schwotzer M, Franzreb M (2022) Practical Insights into the Impedance Response of Interdigitated Electrodes: Extraction of Relative Static Permittivity and Electrolytic Conductivity. Electroanalysis: https://doi.org/10.1002/elan.202200102

Greifenstein R, Ballweg T, Hashem T, Gottwald R, Achauer D, Kirschhöfer F, Nusser M, Brenner-Weiß G, Sedghamiz E, Wenzel W, Mittmann E, Rabe K, Niemeyer C, Franzreb M, Wöll C (2022) MOF-Hosted Enzymes for Continuous Flow Catalysis in Aqueous and Organic Solvents. Angewandte Chemie: https://doi.org/10.1002/anie.202117144

Bolat S, Greifenstein R, Franzreb M und Holtmann D (2023) Process intensification using immobilized enzymes. Physical Sciences: https://doi.org/10.1515/psr-2022-0110

Sayoga G, Abt M, Teetz N, Bueschler V, Liese A, Franzreb M, Holtmann D (2023) Quantitative and non-quantitative assessments of enzymatic electrosynthesis: a case study of parameter requirements. ChemElectroChem: e202300226. https://doi.org/10.1002/celc.202300226

Abt M, Franzreb M, Jestädt M, Tschöpe A (2023) Three-phase fluidized bed electrochemical reactor for the scalable generation of hydrogen peroxide at enzyme compatible conditions. Chemical Engineering Journal: https://doi.org/10.1016/j.cej.2023.146465

Partners

KIT Karlruher Institut für Technologie

Karlsruhe Institute of Technology
Institute of Functional Interfaces

People

Prof. Dr. Matthias Franzreb

Prof. Dr. Matthias Franzreb

Karlsruhe Institute of Technology
Institute of Functional Interfaces

Dr.-Ing André Tschöpe

Dr.-Ing André Tschöpe

Karlsruhe Institute of Technology
Institute of Functional Interfaces

Michael Abt

Karlsruhe Institute of Technology
Institute of Functional Interfaces

Other Projects